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Introduction

The �xed target program at Fermilab has come to an end. New projects are in the planning
stage. Among them is a muon storage ring.

Up to the present, all storage rings in high-energy physics have carried stable particles,
namely the electron and proton and their antiparticles. The muon is unstable and decays
with a mean lifetime of 2:0�10�6 sec. Two types of cooling have been used in the past. One
is stochastic cooling where an electrode is used to detect the positions of the particles and
send a signal to another position across the ring. Through successive applications of this
technique, the phase space is ultimately greatly reduced and beams can be made to collide
with a useful event rate.

The second type of cooling is electron cooling. Here protons and electrons are made to
travel together for a short distance. Equipartition causes transfer of transverse energy of the
protons to that of the electrons.

Neither of these methods is fast enough to allow acceleration of a suÆcient number
of muons up to maximum energy before they decay. A new method known as ionization
cooling has been proposed.[1] The muons are cooled by passing them through a container
of liquid hydrogen. The energy loss reduces both transverse and longitudinal momentum.
The longitudinal momentum is restored with RF cavities. The net result is to maintain the
longitudinal momentum while cooling the transverse momentum.

To minimize the total travel distance of the muons the liquid hydrogen is placed inside
the focusing solenoids. The question arises as to whether the presence of the solenoids
in
uences the phase space occupied by the muons. After the muon scatters it has transverse
momentum. In a constant longitudinal magnetic �eld the trajectory wraps around the �eld
lines and coincides in momentum and position with a particle which scatters one cycle later.

Here we calculate the change in emittance for both a drift space and a solenoid. We �nd
that the presence of the solenoid does cause a reduction in phase space. Shown below are
both a derivation of the behavior of the muon phase space and a plot showing the strength
of the e�ect described.
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Figure 1: Scattering of a muon by a slice of liquid hydrogen.

Multiple Scattering

The rms scattering angle of a charged particle passing through a section of material medium,
in a single transverse plane, is given by the equation[2]:

�0 =
13:6Mev

�cp
z

vuuut x

X0

2
41 + 0:038 log

0
@ x

X0

1
A
3
5 (1)

Here p is the muon momentum and �c is the velocity. The letter z is the charge number
of the particle. For a muon, this number is, of course, 1.0. The thickness of the slab of
material is x, and X0 is the radiation length of the material.

To answer our question about the wrapping up of phase space we shall make a few
approximations. Some of these approximations are necessary. However, their e�ect is small
enough so as not to seriously change the answer to the question. Instead, by simplifying
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some part of the derivation we add greater clarity to the question about the reduction of
phase space.

First we ignore any energy loss. The distance a muon can travel in material will be much
longer than a wave length of magnetic focusing in a solenoid. Also it is diÆcult to calculate
analytically the trajectory of a particle in a solenoid when the magnitude of the momentum
is continuously changing. We also ignore any energy dependence of the rms width of the
scattering on momentum.

Secondly, the value of �0 derived is from a �t to a Moliere distribution. It is not the value
that would be obtained from a direct �t to a Gaussian. We delete the term from equation
(1) containing the logarithm. Then the e�ect of two scatters would be to add in quadrature,
making the mathematics much simpler.

Finally, we assume that the magnetic �eld in the solenoid is uniform. As stated above, the
equations of motion are simpli�ed, since the projection of the motion on a plane perpendic-
ular to the axis is a circle. If we restrict ourselves to �rst order, there are no singularities in
the end �elds. We can integrate right through the ends without any sudden discontinuities.

The E�ect of Scattering on the Beam Matrix

From equation (1) we can determine that the e�ect on the beam (sigma) matrix at the point
of scatter is given by [3]:

��xx(s) = ��yy(s) = K�z (2)

The expressions ��xx(s) and ��yy(s) can be taken to be the changes in the second
moments of the phase space distribution. The subscripts x and y represent the coordinates
in the transverse con�guration space.

Here we use the argument \s" to indicate the point of scatter. We shall also use the
argument \b" and \e" of the sigma matrix to identify the beginning and end of the system
respectively. The indices on the R and � matrices correspond to a six-dimension vector of
kinematic quantities. The vector is (x; x0; y; y; `; Æ). In our particular application, only the
�rst four components are signi�cant.
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Transforming the sigma matrix to the end of the system, we get:

��ij(e) = KRi2(b)Rj2(b)�z +KRi4(b)Rj4(b)�z (3)

We break the total system up into two steps. The �rst step (a) is from the beginning of
the system to the point of scatter. The second step (b) is from the point of scatter to the
end of the system. The total transfer matrix is then:

R(t) = R(b)R(a) (4)

or

R(b) = R(t)R(a)�1 (5)

Substituting for R(b) we get
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The equation is for the components of the beam matrix at the end of the system. The
equation for the beam matrix at the beginning of the system is obtained by omitting the
two summations and the two factors of R(t) on the right side of the equation. Since we will
eventually be taking determinants, this omission will not change the answer.
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Factorized Transfer Matrices

Taking the inverse or determinant of a four-by-four matrix is a procedure fraught with peril,
and guaranteed to produce more errors than correct calculations. Fortunately in this case
the total transfer matrix factors into a product of matrices. Each of these matrices is much
simpler than the product matrix.

From the analytic form of the product of matrices, we can see that one matrix represents
a geometric rotation of two planes[4][5]. The rotating frame is known as the Larmor frame.

The dynamics all take place in the rotating plane. The motions in the two transverse
planes are independent. They consist of harmonic oscillations in each of the two planes.

If the magnetic �eld is not uniform the dynamic motion in the rotated plane is a general
matrix with cosinelike and sinelike functions executing a harmonic motion of changing period.
Since the Larmor frame is a geometric rotation, the components of the transformation matrix
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can be given directly in terms of trigonometric functions.

Non-Uniform Field

R =

0
BBBBBB@

cu sy 0 0
c0u s0u 0 0
0 0 cv sv
0 0 c0v s0v

1
CCCCCCA

0
BBBBBB@

cos� 0 sin � 0
0 cos � 0 sin �

� sin� 0 cos � 0
0 � sin � 0 cos�

1
CCCCCCA (9)

Uniform Field
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Inverse Matrix

R =
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Integrated Product of Inverse Matrices

Drift Spaces

If we do the integration equation for a drift space, we derive:
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We drop the factor K as we shall be taking the ratio of determinants and factors of K
will cancel.

For a single transverse plane:
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1
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L4 (14)

Solenoids

Evaluating the matrix for a solenoid takes a little more e�ort. Here we let the program
MATHEMATICA[6] do the manipulation. We then arrive at
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where

C = cos kL (16)

S = sin kL

k =
qB

2p
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For a single transverse plane:
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Ratio of Emittances

The horizontal and vertical emittances in terms of elements of the beam matrix are given
by:

�2H = �11�22 � �2

21
(18)

�2V = �33�44 � �2

43

From this we can derive the ratio of emittances in a single transverse plane: �S for a solenoid,
and �D for a drift.
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where the Larmor phase � is given by:
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� = kL (20)

and

S = sin� (21)

Figure 2: The ratio of horizontal emittances for solenoids and drift spaces.
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